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ABSTRACT 

Although a tremendous effort has been made to perform a 
reliable analysis of images and videos in the past fifty years, 
the reality is that one cannot rely 100% on the analysis results. 
The only exception is applications in controlled environments 
as dealt in machine vision, where closed world assumptions 
apply. However, in general, one has to deal with an open 
world, which means that content of images may significantly 
change, and it seems impossible to predict all possible 
changes. For example, in the context of surveillance videos, 
the light conditions may suddenly fluctuate in parts of images 
only, video compression or transmission artifacts may occur, a 
wind may cause a stationary camera to tremble, and so on. 
The problem is that video analysis has to be performed in 
order to detect content changes, but such analysis may be 
unreliable due to the changes, and thus fail to detect the 
changes and lead to “vicious cycle”.  

The solution pursuit in this paper is to monitor the 
reliability of the computed features by analyzing their general 
properties. We consider statistical properties of feature value 
distributions as well as temporal properties. Our main strategy 
is to estimate the feature properties when the features are 
reliable computed, so that any set of features that does not 
have these properties is detected as being unreliable. This way 
we do not perform any direct content analysis, but instead 
perform analysis of feature properties related to their 
reliability.  

The main effort in video analysis nowadays is still in 
making the feature computation more reliable. Our claim is 
that we need to accept the fact that the computed features will 
never be 100% reliable, and focus our attention on computing 
reliability measures. This way system decisions will only be 
made when features are sufficiently reliable. This means for 
an intelligent system for video analysis that in addition to 
feature computation, it should perform instantaneous 
evaluation of their reliability, and adapt its behavior in 
accordance to the reliability. For example, if the goal of a 
system is to monitor motion activity, and to signal an alarm if 
the activity is high, the system is allowed to make reliable 
decisions only if there exist a subset of the computed motion 
activity features that is sufficiently reliable. The monitoring of 
features reliability and adjusting the system behavior 
accordingly, seems to be the only way to deploy autonomous 
video surveillance systems. 

 

1. INTRODUCTION 
We begin by showing two examples of video content 

changes that cause the existing motion detection approaches to 
inaccurately detect the presence of substantial motion. Clearly, 
the detected motion is present in videos, but it is due to some 
content artifacts and is not due to the actual presence of 
moving objects. Consequently, human observant ignores such 
“motion” as irrelevant, while standard video analysis systems 
detect it as significant activity. We will show that the feature 
reliability methods proposed in this paper allow us to identify 
the unreliable motion features, and to ignore the irrelevant 
artifacts. This is possible without reducing the detection rate 
of real moving objects. Consequently, we eliminate false 
alarms without reducing the detection rate. We stress that this 
is obtained without any direct video content analysis (e.g., 
using different features), but by monitoring the reliability of 
computed features. As stated in the introduction, direct video 
content analysis with further features does not solve the 
problem, since these features may also become unreliable. 

Our first example illustrates motion artifacts in Campus 31 
video introduced by some reflections in windows that are 
probably caused by cars passing by. In Fig. 1, we show two 
frames from Campus 3 video, one showing real motion, and 
the second showing the motion artifacts in addition to the 
normal motion. Our second example, in Fig. 2(a), shows 
motion artifacts introduced by video compression. The same 
scene without such artifacts is shown in Fig. 2(b). This video, 
which we call Temple 2, was recorded in real-world 
environment by the video surveillance system of the Campus 
Police Division of the Temple University.  

In Section 2, we first describe a simple temporal method to 
determine the reliability of motion detection. In Section 3, we 
present a more sophisticated statistical method based on 
distribution analysis of feature values and information theory 
[21]. Both methods monitor features computed by our motion 
detection approach presented in [17], which we summarize in 
Section 4. The motion features are computed for gray level or 
infrared videos using 3D spatiotemporal blocks of spatial size 
8x8 pixels, and temporal size of 3 frames. The blocks are 
disjoint in space and overlap by one frame in time. As result 
we obtain motion activity values for each 8x8 block in every 
video frame. By thresholding the motion activity values, we 
                                                 
1 Campus 3 can be obtained from the Performance Evaluation 
of Tracking and Surveillance (PETS) repository: 
ftp://pets.rdg.ac.uk/PETS2002//DATASET1/TESTING/CAMERA3_JPEGS/ 



 

obtain a binary feature, called motion detection, with 1 
standing for ‘motion detected’ and 0 for ‘no motion detected’. 
Both videos as well as our motion detection results can be 
viewed on [12].  

 

(a)  

(b)  

Figure 1. Two frames from Campus 3 video with moving 
blocks highlighted red: (a) motion artifacts due to reflections 
in the windows, (b) the same scene (a few frames later) 
without the artifacts. 

 

(a)  

(b)  

Figure 2. Two frames from Temple 2 video with moving 
blocks highlighted red: (a) motion artifacts introduced by 
video compression, (b) the same scene (a few frames later) 
without the artifacts. 

 
A temporal reliability analysis introduced in Section 2 is 

applied to the motion detection feature, while a statistical 
reliability analysis introduced in Section 3 is applied to the 
motion activity feature. 

 
2. TEMPORAL ANALYSIS OF FEATURE 
RELIABILITY 

In this section, we describe a simple temporal method to 
determine the reliability of motion features. The input motion 
feature has binary values for each 8x8 block for each video 
frame with 1 for ‘motion detected’ and 0 for ‘no motion 
detected’. The algorithm described in Section 4.2 computes 
this feature vector. The 8x8 blocks are disjoint. Let f(n) be the 
number of 1s in the frame number n, i.e., f(n) is the number of 
detected moving blocks as function of frame number. We use 
the finite difference approximation of first derivative of f to 
monitor the reliability of our motion detection. In simple 
words, if the jump in values of f is above a certain threshold 
for a given time interval, the binary feature is unreliable in this 
interval. The threshold necessary to detect the unreliable 
features is not static. We propose a dynamic thresholding 
algorithm described in Section 2.1 to learn and vary this 
threshold. However, some other learning techniques could 
also be used.  

This reliability property works under the assumption that 
there exists an upper bound on the size of moving objects 
whose motion we want to detect (measured in the number of 
moving blocks). This assumption holds for most surveillance 
videos. Now we consider an example video, called Temple 2, 
that satisfies this assumption. This video is recorded by a roof 
mounted, stationary camera, so that a certain minimal distance 
to moving objects is guaranteed. Typical moving objects there, 
humans and vehicles, cannot get arbitrarily large. Hence, the 
fraction of the scene occupied by a moving object is limited. 
Observe that the actual value of the upper bound on the size of 
moving objects needs not to be known, since our algorithm 
learns it automatically. 

In Fig. 3(a), we see the graph of function f for Temple 2 
video. Time intervals with significant jumps of f that are 
correctly identified by our dynamic thresholding are marked 
with red lines in Fig. 3(b). The graph of modified feature f, 
when f was set to zero within the time intervals when motion 
detection was detected as unreliable is shown in Fig. 3(c). Fig. 
3(c) shows that the proposed method is able to identify and 
exclude the unreliable results of motion detection. By 
excluding these time intervals from further processing, we not 
only eliminate false alarms, but make possible to correctly 
detect alarm situations, although the input motion detection in 
not 100% reliable. For example, a significant increase in the 
number of motion blocks after the frame 1700 indicates an 
alarm situation. This is a correct prediction, since a street fight 
is recorded on the video after the frame 1700, see the Temple 
2 video [12]. 
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Figure 3. (a) The graph of f(n), which is the number of 
moving blocks as function of frame number n. (b) Significant 
jumps of f (caused by feature unreliability) correctly identified 
by our dynamic thresholding. (c) The graph of f padded by 
zeros for frames with unreliable motion detection. 

 
2.1. DYNAMIC THRESHOLDING ALGORITHM 

Now we describe a dynamic thresholding algorithm used to 
detect the jumps of function f. First we compute the initial 
values of mean meanl and standard deviation stdl using all 
previous values of f(x) for x=1, …, t-1 and some time instance 
t. The actual dynamic thresholding starts at time x=t. A jump 
up is detected at points }{ wxxxx +++∈ ,..,2,1  for a 
window size w if  

meanrw(x) – meanl(x) > C1*stdl(x),  

where C1 is a constant. A dynamic threshold values meanl and 
stdl are updated if 

    meanrw(x) – meanl(x) < C2*stdl(x),  
 
where C2 < C1 is a second constant. The updated values are: 
 

meanl(x) = u*meanl(x) + (1-u)*meanrw(x) 
 
stdl(x) = u*stdl(x) + (1-u)*stdrw(x) 

 
where u is a learning constant and  
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The symmetric window constant w was set to 3, giving us 

a sliding window of 7 frames (2*w+1). The learning constant 
was u=0.9. Constants C1, C2 of function f used in detecting 
jumps of the Temple 2 video were selected based on the initial 
running average meanl and stdl. The value of meanl was 10.3 
and the value of stdl was 7.4. Constant C1 was set to 15 and 
constant C2 was set to 3 providing the initial jump detected 
threshold to 154.5 and reset to no-jump detected threshold of 
30.9.  

 
3. STATISTICAL ANALYSIS OF FEATURE 
RELIABILITY 

To determine whether a particular feature is reliable, we 
assume that the feature bears more information if its 
distribution differs more significantly from a normal 
(Gaussian) distribution. Similar heuristics are used e.g., in 
Independent Components Analysis [20]. The follow-up 
assumption is that the feature becomes unreliable if an 
addition random noise is superimposed, which would lead the 
distribution of such noisy feature to become more Gaussian 
like. Hence, by measuring to what extent a feature distribution 
differs from a Gaussian distribution, one can not only get 
information to what extent the feature is useful but also when 
such usefulness drops (e.g., due to some external and often 
non-observed factor). 

The Information Theory proposes negentropy as the 
measure of this discrepancy. Given a probability density p(x) 
of a feature, Differential Entropy is defined [18, 19] as: 

( ) ( ) ( )dxxpxpxH ∫ −=
∞

∞−
log    (1) 

For a given class of distributions p(x) that have the same 
variance 2σ , differential entropy is maximal for a Gaussian 
distribution where it is equal 

( ) 22 2log
2
1 σπσ eHGauss = .    (2) 

Hence, a negentropy, which defined as 
 ( ) ( ) )(2 xHHxJ Gauss −= σ     (3) 

or its normalized value 
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may be used to measure usefulness and reliability of a feature. 
Observe that the minimal value of negentropy is 0 (when p(x) 
is Gaussian). 

A naïve approach to compute negentropy would be to 
employ histograms to approximate p(x) with piecewise linear 
function p’(x) such that: 

 ( ) ( ) [ ]xxxxxKpxp iii ∆+∈= ,,'   
where K is a normalization constant (chosen such that p’(x) is 
a distribution). However, as shown in [21] this non-parametric 
technique is very unstable since dependent on a proper choice 
of a histogram bin size x∆  and histogram centers xi. Hence we 
use parametric approach suggested in Hyvarinen’s NIPS 1997 
paper [18]. The main ideas of this approach are: 

1) Instead of original feature x, use a standardized feature 
x*=(x-mean(x))/std(x) that have zero mean and unit standard 
deviation. This way, we could directly use negentropy to 
compare reliability with no need to normalize with the entropy 
of a Gaussian. 

2) Use a first-order Taylor approximation of a logarithmic 
function in eq. (1) that leads to: ( ) ( ) 2/1log1 2εεεε +≈++ ; 

3) Use conveniently chosen set of orthogonal functions of 
Gi(x) of a feature x to expand probability density function p(x) 
in vicinity of a Gaussian probability density. 

In practice, the choice of orthogonal functions is based on 
practicability and sensitivity on outliers of the computation of 
estimates for expectations E(Gi(x)), integrability of the 
obtained probability density function approximation and last, 
but not the least, the properties of non-Gaussian distributions 
we want to capture. 

Based on such consideration, [18] proposes the following 
two approximations of negentropy, that we use in this paper: 

( ) ( ) ( )
2

*
2

2
2/*

1
* 22*









−+⋅= −

π
xEkexEkxJ a

x
a

  (5a) 

( ) ( ) ( )
2

2/
2

2
2/*

1
*

2
12*2*









−+⋅= −− x

b
x

b eEkexEkxJ   (5b) 

where the coefficients are determined as: 

27316
24,62

24,
938

36
221 −
=

−
=

−
= ba kkk

π

.   (6) 

The proposed technique is applicable on any continuous 
feature. In this paper, we evaluate the reliability of the motion 
activity feature, defined in [17] (see Section 4) as the largest 
eigenvalue of texture vectors in a small time window. For 
each frame, we standardize the feature values x*, compute 
expectations ( )*xE , ( )22/*

2*xexE −⋅ and finally compute the 
negentropy approximations eq. (5a), (5b) per frame. 

We evaluated the proposed techniques for assessing 
feature reliability on a set of videos [12]. This set includes 
infrared videos, for which the same settings of parameters as 
for visual light videos were used. Here we focus on our results 
on two video sequences from the Performance Evaluation of 

Tracking and Surveillance (PETS) repository: a sequence 
from PETS20012 here referred to as Campus 1 sequence, a 
sequence from PETS2002, here referred to as the Campus 3 
sequence and on a Temple 2 sequence from Temple 
University. 

Campus 1. At the beginning of the sequence, there is no 
movement, so changes in the motion activity (an observed 
feature) are random, which reflects small negentropy values in 
approximately first 100 frames, see Fig 4(a). Both negentropy 
approximations (eq. 5a, 5b) demonstrate strong drop between 
frames 1960 and 2000 which corresponds to the higher level 
of noise that can be visually observed between these frames. 
Function B (eq. 5b) provides more stable approximation 
values, which makes it potentially more useful. 

Campus 3. Both methods identified drop around frames 
330, 660, a strong drop around 700, a drop around 720 and the 
relatively long-term drop between 800 and 900, see Fig. 4(b). 
Finally, there were some small oscillations between 1200 and 
1300 and one drop around 1400. All these events correspond 
to frames in the video sequence when our algorithm has 
difficulties in properly identifying moving objects based on 
observed feature (e.g., due to reflections in the upper right part 
of the frame, cp. Fig. 1). Again Function B (eq. 5b) performed 
better, by having less oscillations and fluctuations.  

Temple 2. On this video, there is evident instability 
(manifested as flicker) that can be traced to applied 
compression technique. The period of this disturbance, which 
has negative effects on motion detection, is around 62 frames. 
Using the proposed technique, we obtained negentropy values 
that reflect this periodicity. Both functions eq. (5a) and (5b) 
have strong periodical components, see Fig. 4(c), and 
demonstrate oscillations which period can be correctly 
determined using a Fast Fourier Transform [22], as 
approximately 62 frames. Function (5b) is again more stable 
and provides better automatic period estimation. The results of 
the statistical method agree with those of the temporal 
methods, cp. Fig. 3. 

 
A common denominator of the results shown is that the 

proposed negentropy-based technique can help in determining 
frames when the observed feature is unreliable (periodic or 
pulse flicker, noise, etc.). Since both eq. 5a and 5b are only 
relatively rough approximations of negentropy, there is no 
wonder they do not provide the same values, especially when 
a negentropy is relatively high. As expected, when a 
negentropy is low, the feature probability distribution is closer 
to a Gaussian so both approximations would give similar 
results. Generally, eq. (5b) provides better performance. It is 
more stable and has less fluctuations. Hence is potentially 
more suitable for automatic thresholding.  
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4. FEATURE GENERATION AND MOTION 
DETECTION 

We shortly describe our motion detection method proposed 
in [17]. It is based on change analysis of texture vectors 
computed for 3D, spatiotemporal (sp) blocks. In our previous 
paper [11] we have shown that the use of sp texture vectors of 
3D blocks in the framework of Stauffer and Grimson [14] can 
improve the detection of moving objects while potentially 
cutting back the processing time due to the reduction of the 
number of input vectors per frame. Our experimental results in 
[17] (videos be viewed on [12]) show that our motion 
detection technique leads to further performance 
improvements.  

 

4.1 Video representation with spatiotemporal 
(sp) texture vectors 

We represent videos as three-dimensional (3D) arrays of 
gray level or monochromatic infrared pixel values gi,j,t at a 
time instant t and a pixel location i, j. A video is characterized 
by temporal dimension Z corresponding to the number of 
frames, and by two spatial dimensions, characterizing number 
of pixels in horizontal and vertical direction of each frame. 

We divide each image in a video sequence into disjoint 
NBLOCK× NBLOCK squares (e.g., 8x8 squares) that cover the 
whole image. Spatiotemporal (3D) blocks are obtained by 
combining squares in consecutive frames at the same video 
plane location. In our experiments, we used 8x8x3 blocks that 
are disjoint in space but overlap in time, i.e., two blocks at the 
same spatial location at times t and t+1 have one square in 
common.  

The fact that the 3D blocks overlap in time allows us to 
perform successful motion detection in videos with very low 
time frequency, e.g., in our experimental results  [12] videos 
with 2 fps (frame per second) are included. The obtained 3D 
blocks are represented as 192-dimensional vectors of gray 
level or monochromatic infrared pixel values. We then zero 
mean these vectors and project them to three dimensions using 
principal component analysis (PCA). The obtained 3-
dimensional vectors form a compact spatiotemporal texture 
representation for each block. The PCA projection matrices 
are computed separately for all video plane locations (a set of 
disjoint 8x8 squares in our experiments).  

The blocks are represented by N-dimensional vectors bI,J,t, 
specified by spatial indexes (I,J) and time instant t. Vectors 
bI,J,t contain all values gi,j,t of pixels in the corresponding 3D 
block.  

To reduce dimensionality of bI,J,t while preserving 
information to the maximal possible extent, we compute a 
projection of the normalized block vector to a vector of a 
significantly lower length K<<N using a PCA projection 
matrix PK

I,J computed for all bI,J,t at video plane location (I,J). 
The resulting sp texture vectors *

,, tJIb = PK
I,J*bI,J,t provide a 

joint representation of texture and motion patterns in videos 
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Figure 4. Estimated negentropy per frame of each video 
using (eq. 5a) in red and (eq. 5b) in blue for (a) Campus 
1; (b) Campus 3; (c) Temple 2 videos. 



 

and are used as input of algorithms for detection of moving 
objects. We used K=3 in our experiments. 

To compute PK
I,J we employ the principal values 

decomposition following [4,5]. A matrix of all normalized 
block vectors bI,J,t at video plane location (I,J) is used to 
compute the N×N dimensional covariance matrix SI,J. The 
PCA projection matrix PI,J for spatial location (I,J) is 
computed from the SI,J covariance matrix. The projection 
matrix PI,J of size N×N represents N principal components. By 
taking only the principal components that corresponds to the K 
largest eigenvalues, we obtain PK

I,J.   
 
4.2 Moving objects detection based on local 
variation 

The assumption of the proposed technique is that the 
variation of location vectors—corresponding to the same 
location within a small number of consecutive frames— will 
increase if the vectors correspond to a moving object. In 
practice, for each location (x,y), we consider vectors  

WtyxtyxWtyxWtyx bbbb ++−− ,,
*

,,
*

1,,
*

,,
* ,...,,,, K   

corresponding to a symmetric window of size 2W+1 around 
the temporal instant t. For these vectors, we compute the 
covariance matrix tyx ,,C . We assign the largest eigenvalue of 

tyx ,,C , denoted as Λx,y,t, to a given spatiotemporal video 
position to define a local variance measure, which we will 
also refer to as motion activity 

ma(x,y,t) = Λx,y,t . 
The larger the variance measure ma(x,y,t), the more likely is 
the presence of a moving object at position (x,y,t). Finally, we 
label each video position as moving or stationary 
(background) depending whether the motion activity is larger 
or smaller than a suitably defined threshold. We use a 
dynamic thresholding algorithm (described in Section 2) to 
determine the threshold value at position (x,y,t) based on the 
history of ma(x,y,s) values over time (s=1, …, t-1).  
 
5. CONCLUSIONS 

In this paper, we proposed and evaluated two methods to 
monitor the reliability of features applied in video surveillance 
and motion detection. The methods have been evaluated on 
real-life surveillance videos. Both methods correctly identified 
time intervals when an observed feature becomes non useful 
for motion detection (e.g., due to flicker, artifacts introduced 
by compression algorithm, etc.). The proposed methodology is 
potentially applicable to other domains where unsupervised 
learning is performed under open-world assumption (where 
we cannot anticipate all the events which could occur during 
the operational life of an automated intelligent system).  

 
6. ACKNOWLEDGEMENTS 

D. Pokrajac has been partially supported by NIH-funded 
Delaware Biomedical Research Infrastructure Network 

(BRIN) Grant (P20 RR16472), and DoD HBCU/MI 
Infrastructure Support Program (45395-MA-ISP Department 
of Army). 
 
7. REFERENCES 
[1] Buttler, D., Sridharan, S., and Bove, V. M. Real-time 
adaptive background segmentation. In Proc. IEEE Int. Conf. 
on Multimedia and Expo (ICME), Baltimore 2003. 
[2] R.T. Collins, A.J. Lipton, and T. Kanade, “Introduction to 
the Special Section on Video Surveillance”, IEEE PAMI 22(8) 
(2000), pp. 745–746. 
[3] Devore, J. L., Probability and Statistics for Engineering 
and the Sciences, 5th edn., Int. Thomson Publishing Company, 
Belmont, 2000.  
[4] Duda, R., P. Hart, and D. Stork, Pattern Classification, 
2nd edn., John Wiley & Sons, 2001.  
[5] Flury, B. A First Course in Multivariate Statistics, 
Springer Verlag, 1997. 
[6] I. Haritaoglu, D. Harwood, and L. Davis, “W4: Real-
Time Surveillance of People and Their Activities”, IEEE 
PAMI 22(8) (2000), pp. 809–830. 
[7] Jain, R., Militzer, D., and Nagel, H. Separating 
nonstationary from stationary scene components in a sequence 
of real world TV images. In Proc. IJCAI, 612–618, 
Cambridge, MA, 1977 
[8] Jolliffe, I. T, Principal Component Analysis, 2nd edn., 
Springer Verlag, 2002. 
[9] Javed, O., Shafique, K., and Shah, M. A. Hierarchical 
approach to robust background subtraction using color and 
gradient information. In Proc. IEEE Workshop on Motion and 
Video Computing (MOTION), 22-27, Orlando, 2002,. 
[10] N. M. Oliver, B. Rosario, and A. P. Pentland, “A 
Bayesian Computer Vision System for Modeling Human 
Interactions”, IEEE PAMI 22(8) (2000), pp. 831–843. 
[11] D. Pokrajac and L. J. Latecki: Spatiotemporal Blocks-
Based Moving Objects Identification and Tracking, IEEE 
Visual Surveillance and Performance Evaluation of Tracking 
and Surveillance (VS-PETS), October 2003. 
[12] R. Miezianko, L. J. Latecki, D. Pokrajac. Link to test 
results.  http://knight.cis.temple.edu/~video/VA  
[13] Remagnino, P., G. A. Jones, N. Paragios, and C. S. 
Regazzoni, eds., Video-Based Surveillance Systems, Kluwer 
Academic Publishers, 2002. 
[14] C. Stauffer, W. E. L. Grimson, “Learning patterns of 
activity using real-time tracking”, IEEE PAMI 22(8) (2000), 
pp. 747–757. 
[15] Westwater, R., Furht, B., Real-Time Video Compression: 
Techniques and Algorithms, Kluwer Academic Publishers, 
1997.  
[16] C. Wren, A. Azarbayejani, T. Darrell, and A.P. Pentland, 
“Pfinder: Real-time Tracking of the Human Body”, IEEE 
PAMI 19(7) (1997), pp. 780–785. 
[17] L. J. Latecki, R. Miezianko, and D. Pokrajac. Motion 
Detection Based on Local Variation of Spatiotemporal 
Texture. CVPR Workshop on Object Tracking and 



 

Classification Beyond the Visible Spectrum (OTCBVS), 
Washington, July 2004. 
[18]A. Hyvärinen. New approximations of differential entropy 
for independent component analysis and projection pursuit. In 
Advances in Neural Information Processing Systems, volume 
10, pages 273-279. MIT Press, 1998. 
[19]T. M. Cover and J. A. Thomas. Elements of Information 
Theory. John Wiley & Sons, 1991. 

[20] A. Hyvärinen, J. Karhunen, and E. Oja. Independent 
Component Analysis. Wiley, 2001. 
[21] D. Pokrajac and L. J. Latecki. Entropy-Based Approach 
for Detecting Feature Reliability. Invited Paper, 48th Conf. for 
Electronics, Telecommunications, Computers, Automation, 
and Nuclear Engineering (ETRAN). Cacak, Serbia, June 2004. 
[22] E. Oran Brigham. The Fast Fourier Transform: An 
Introduction to Its Theory and Application. Prentice Hall, 
1973.

 


